Mikrobielle Gemeinschaften in der Tiefe

Thomas Rattei von der Universität Wien und ein internationales ForscherInnenteam beschäftigen sich mit dem mikrobiellen Leben in der Tiefe. Sie untersuchten die Biologie eines bislang unkultivierten Archaeons und fanden heraus, dass es Kohlendioxid verbraucht und so zur CO2-Bilanz der Erde beiträgt.

Mikrobielle Gemeinschaften in der Tiefe sind im Allgemeinen schwer zugänglich, so dass diese "dunkle Materie" weitestgehend unentdeckt bleibt. Die dort gefundenen Archaeen unterscheiden sich in ihren Eigenschaften, z.B. im molekularen Aufbau und der Zellstruktur, deutlich von bakteriellen Mikroben. Einem Team der Universität Regensburg (Christine Moissl-Eichinger, derzeit MedUni Graz) und der UC Berkeley, USA, in enger Kooperation mit ForscherInnen in Wien, Paris, Bremen, Freiburg und München, ist es aber nun gelungen, die Biologie eines bislang unkultivierten Archaeons aus Tiefenwasser genauer zu studieren.


Eine ungewöhnliche Struktur

Dieser Mikroorganismus ("Candidatus Altiarchaeum hamiconexum") wird in Form von Biofilmen an die Oberfläche von kalten Schwefelquellen in der Gegend um Regensburg und in den USA angespült. Mit modernsten molekularen Analysemethoden (Metagenomik, Transkriptomik, isotopen-basierte Lipidomik) verbunden mit ultrastrukturellen Untersuchungen boten sich den WissenschafterInnen faszinierende Einblicke in das neuartige Archaeon. Der Mikroorganismus besitzt einen besonderen Stoffwechsel, eine für Archaeen ungewöhnliche Doppelmembran, und etwa 100 einzigartige Zelloberflächenanhängsel, die er zur Anheftung an Oberflächen und anderen Zellen verwendet. Diese fädigen Gebilde zeigen eine ungewöhnliche Struktur: das Stacheldraht-artige Filament trägt einen winzigen Enterhaken am Ende (Durchmesser ca. 60 nm).


Elektronenmikroskopische Aufnahme des Enterhakens (Foto: Christine Moissl-Eichinger).



Computeranalysen an der Universität Wien

Als weiteres Highlight neben der Ultrastruktur wurde auch das Genom dieses ungewöhnlichen Mikroorganismus erfasst und analysiert. Die dafür notwendigen aufwändigen Computeranalysen wurden in enger Zusammenarbeit mit der Arbeitsgruppe um Thomas Rattei vom Department für Mikrobiologie und Ökosystemforschung der Universität Wien durchgeführt. "Genomforschung von Mikroorganismen direkt aus Umweltproben ist wie ein gigantisches Puzzle", so Thomas Rattei über die Rolle der Bioinformatik in diesem Projekt. "Zunächst mussten wir herausfinden, welche Bestandteile des Erbguts im Biofilm zu diesem Archaeons gehören. Erst dann konnten wir seine Bedeutung analysieren und seinen Stoffwechsel vorhersagen."


Archaeon trägt zur CO2-Bilanz der Erde bei

Besonders interessante Stoffwechseleigenschaften untersuchte die Arbeitsgruppe um Michael Wagner, ebenfalls vom Department für Mikrobiologie und Ökosystemforschung der Universität Wien, mit Hilfe des Nano-Sekundärionen-Massenspektrometers (NanoSIMS). "Wir haben mit dieser ultrasensitiven Technik aus der Genomanalyse abgeleitete Vorhersagen über den Stoffwechsel dieser Mikrobe experimentell überprüft. Wir konnten zeigen, dass das Archaeon – anders als ursprünglich gedacht – kein Acetat als Substrat verwendet, sondern seinen Zellkohlenstoff aus Kohlendioxid bezieht. Somit ist das Archaeon vermutlich ein wichtiger Verbraucher dieses Treibhausgases in der Tiefe und trägt so zur CO2-Bilanz des Ökosystems Erde bei", erklärt Michael Wagner. 

Durch eine Kombination aus verschiedenen ungewöhnlichen Eigenschaften verschafft sich "Candidatus Altiarchaeum hamiconexum" also einen außerordentlichen Standortvorteil und kann somit seine Biotope auf eine bislang unbeschriebene Art und Weise dominieren. (vs)


Die Publikation "Biology of a widespread uncultivated archaeon that contributes to carbon fixation in the subsurface" (AutorInnen: Thomas Rattei, Michael Wagner et al.) erschien am 26. November 2014 im Journal "Nature Communications".