Das Gespür der Spinnen

Spinnen besitzen einen hervorragenden Vibrationssinn, der äußerst empfindlich und an die biologisch wichtigen Signale perfekt angepasst ist. Dieser Sensibilität liegt eine ausgefeilte Mikromechanik zugrunde, die Clemens Schaber und Friedrich Barth vom Department für Neurobiologie in Zusammenarbeit mit Stanislav Gorb von der Universität Kiel an der Jagdspinne "Cupiennius salei" untersucht haben. Zur Erlangung der genauen Kenntnisse der mechanischen Vorgänge bei der Aufnahme und Umformung von Vibrationsreizen - für die sich auch zunehmend die Industrie interessiert - haben die Wissenschafter Messungen im Mikronewton- und Nanometerbereich durchgeführt und die Ergebnisse im Journal of the Royal Society Interface publiziert.

Jagdspinnen sind hoch vibrationsempfindliche Tiere, und spielen dabei mit Kakerlaken, die interessanterweise an vorderster Stelle des Speiseplans der Spinnen stehen, in der Liga der Champions. Die untersuchte Spinne "Cupiennius salei" aus der Familie der Bromelienspinnen (Ctenidae) baut keine Netze, sondern lauert in der Dunkelheit auf ihre Beute. Sie wird seit fünfzig Jahren als Modellorganismus für mechanorezeptive Systeme, bei denen ausgeklügelte Mechanismen den Reiz für die Sinneszellen aufbereiten, herangezogen.

Auf der Lauer

Friedrich Barth, emeritierter Professor für Neurobiologie, hat die Spinne "Cupiennius salei" über Jahrzehnte beforscht. Ihr Beutefangverhalten stützt sich auf die mechanischen Sinne für Vibration und Luftströmungen. Anhand des Reizmusters der Vibrationen und Luftströmungen ist die auf Pflanzen lauernde Spinne in der Lage, ihre Beute – vor allem Insekten – im Sprung aus der Luft zu fangen. Das erfordert ein hohes Maß an Koordination, das durch die Verdrahtung der für die Rezeption zuständigen Nervenzellen biologisch optimal gelöst ist.

Umwandlung der Kräfte

Schwerpunkt der Forschungsarbeit war die Analyse der grundlegenden Mechanismen bei der Mechanorezeption, der Erforschung der Strukturen und Sinneszellen, die mechanische Kräfte in Nervenerregung umwandeln. Zur Detektion von Spannungen im Exoskelett – dem stabilisierenden Außenskelett – der Spinne dienen über 3.000 Spaltsensillen, membranbedeckte Schlitze in der Cuticula, der Außenhaut der Spinne. Die Spalte sind über das ganze Exoskelett verteilt.

Nervöse Signale

"Interessant ist, dass sich die raffiniertesten davon, die lyraförmigen Organe, in denen bis zu 30 hochempfindliche Spalte nahezu parallel angeordnet sind, in der Nähe der Gelenke der acht Beine der Spinne befinden. Wir haben dabei Kräfte im Mikronewton-Bereich und die Verformung der Spalte der lyraförmigen Organe, die zur Auslösung nervöser Signale ausreichen, im Nanometer-Bereich gemessen", erklärt Clemens Schaber.

Die Erforschung von Spinnen ist ein weiteres Mosaiksteinchen für das Verständnis der Evolution und der Diversität der Tiere. Darüber hinaus zeigt sich vonseiten der Hochtechnologie zunehmendes Interesse, bio-inspirierte Sensoren für technische Anwendungen zu entwickeln. (vs)

Das Paper "Force transformation in spider strain sensors: white light interferometry" (Autoren: Clemens F. Schaber, Stanislav N. Gorb and Friedrich G. Barth) erschien am 26. Oktober 2011 im Journal of the Royal Society Interface.