Erstmals stellare Winde von drei sonnenähnlichen Sternen erfasst

Astrophysiker*innen konnten den Masseverlust von Sternen über ihre Sternenwinde quantifizieren

Ein internationales Forscher*innenteam unter der Leitung der Astrophysikerin Kristina Kislyakova von der Universität Wien war erstmals in der Lage, die stellaren Winde dreier sonnenähnlicher Sterne direkt nachzuweisen: Indem die Röntgen-Emission der Astrosphären dieser Sterne aufgezeichnet wurde, konnte ihr Masseverlust über die Sternwinde bestimmt werden. Auf den untersuchten Sternen weht demnach ein 10- bis 66-fach stärkerer Sternenwind als in unserem Sonnensystem. Die Studie wurde aktuell in Nature Astronomy veröffentlicht. 

So wie die Heliosphäre unser Sonnensystem umgibt, werden andere Sterne durch eine Astrosphäre umgeben - vorstellbar als eine Art sehr heiße Plasmablase, die von stellaren Winden in das interstellare Medium, einen Raum voll Gas und Staub, geblasen wird. Diese Sternenwinde treiben viele Prozesse an, die zentral für das Verständnis der stellaren und planetaren Entwicklung in diesen Sternensystemen sind, beispielsweise die Verdampfung der Atmosphären von Planeten und den damit verbundenen Masseverlust. Pro Jahr gesehen ist dieser Masseverlust von Planetenatmosphären zwar winzig, über lange geologische Zeiträume sind diese Verluste jedoch mitentscheidend dafür, ob sich ein Planet zu einer bewohnbaren Welt oder zu einem luftleeren Felsen entwickelt.

Bisher gab es jedoch für die Existenz dieser Sternenwinde bei sonnenähnlichen Sternen (so genannten Hauptreihensternen, also quasi Sternen in der Blüte ihres Lebens) nur indirekte Hinweise. Einem internationalen Forschungsteam unter der Leitung von Kristina Kislyakova, Senior Scientist am Institut für Astrophysik der Universität Wien, gelang es nun erstmals, die stellaren Winde dreier sonnenähnlicher Sterne direkt nachzuweisen und den von ihnen verursachen Masseverlust des Sterns zu messen.

Dafür nutzte das Team die Röntgen-Emission: Stellare Winde bestehen hauptsächlich aus Protonen und Elektronen, enthalten aber auch eine kleine Menge schwererer, hochgeladener Ionen (z. B. Sauerstoff, Kohlenstoff). Diese Ionen senden Röntgenstrahlen aus, indem sie Elektronen aus dem neutralen interstellaren Medium um den Stern herum fangen.

Den Durchbruch der Gruppe streicht auch Koautor Manuel Güdel, Leiter der Forschungsgruppe „Stern- und Planetenentstehung“ am Institut für Astrophysik der Universität Wien hervor: "Seit drei Jahrzehnten bemühten sich weltweit viele Gruppen, Winde um sonnenähnliche Sterne nachzuweisen und ihre Stärke zu messen, doch bisher gab es nur indirekte Hinweise auf die Existenz solcher Winde, die auf ihren sekundären Effekten auf den Stern oder seine Umgebung beruhten." Seine Forschungsgruppe habe zuvor versucht, die Radio-Emission der Winde zu erfassen, konnte aber nur obere Grenzwerte für die Windstärke angeben, nicht jedoch die Winde selbst nachweisen. "Unsere neuen röntgenbasierten Ergebnisse ebnen nun den Weg, diese Winde direkt zu finden und sogar abzubilden und ihre Wechselwirkungen mit den umliegenden Planeten zu untersuchen", so Güdel. 

Röntgenemission von Astrosphären entdeckt

Dem Team gelang es mithilfe von Beobachtungen mit dem Weltraumteleskop XMM-Newton, diese Röntgenemission der Astrosphären sonnenähnlicher Sterne erstmals direkt nachzuweisen und von den Röntgenemissionen der Sterne selbst zu trennen. Dadurch konnten zum ersten Mal stellare Winde direkt aufgezeichnet werden und die Massenverlustrate der Sterne über ihre Sternwinde berechnet werden.

Über die Analyse der spektralen Fingerabdrücke (so genannter Spektrallinien) der Sauerstoff-Ionen bestimmten die Forscher*innen die Sauerstoffmenge und letztlich die Gesamtmasse des von den Sternen ausgestoßenen Sternwindes. Dabei zeigte sich, dass die stellaren Winde bei den untersuchten Sternen (70 Ophiuchi, epsilon Eridani und 61 Cygni) deutlich stärker wehen: Die Massenverlustrate wird im Fall des Sterns 70 Ophiuchi auf das 66,5±11,1-fache, im Fall der Sterne epsilon Eridani und 61 Cygni auf das 15,6±4,4 bzw. 9,6±4,1-fache der Massenverlustrate unserer Sonne geschätzt. Ursache für die stärkeren Winde könnte die stärkere magnetische Aktivität dieser Sterne erklärt sein.

Sonnensystem als natürliches Labor

"Innerhalb unseres Sonnensystems wurde die Emission des Landungsaustausch bereits bei Planeten, Kometen und in der Heliosphäre beobachtet – hier haben wir also quasi ein natürliches Labor, um die Zusammensetzung des Sonnenwinds zu untersuchen", erklärt die Hauptautorin der aktuell im Journal Nature Astronomy publizierten Studie, Kristina Kislyakova. Die Beobachtung dieser Emission von weit entfernten Sternen sei aber natürlich aufgrund der Schwäche des Signals ungleich schwieriger: "Außerdem ist es aufgrund der Entfernung zu den Sternen sehr kompliziert, das von der Astrosphäre ausgesendete Signal von der tatsächlichen Röntgenemission des Sterns selbst zu trennen, auch weil ein Teil dieser Emissionen aufgrund instrumenteller Effekte über das Sichtfeld des Teleskops ,gestreut‘ wird. Wir haben einen neuen Algorithmus entwickelt, der die Röntgen-Emissionen des Sterns von denen der Astrosphäre trennt. Zudem konnten wir Signale für den Ladungsaustausch identifizieren, die von Sauerstoff-Ionen aus dem Sternwind und dem umgebenden neutralen interstellaren Medium von drei Hauptreihensternen stammen." Die geschätzten Massenverlustraten können künftig als Maßstab für Sternwindmodelle dienen und erweitern die bisherigen begrenzten Beobachtungsdaten für die Winde von sonnenähnlichen Sternen.

Originalpublikation in Nature Astronomy: 

K.G. Kislyakova, M. Güdel, D. Koutroumpa, J.A. Carter, C.M. Lisse, S. Boro Saikia: X-ray detection of astrospheres around three main-sequence stars and their mass-loss rates. 2024.
DOI : 10.1038/s41550-024-02222-x
www.nature.com/articles/s41550-024-02222-x 

Abbildungen: 

Abb. 1: Infrarotbild der Schockwelle (roter Bogen), die von dem massereichen Riesenstern Zeta Ophiuchi in einer interstellaren Staubwolke erzeugt wird. Die schwachen Winde von sonnenähnlichen Hauptreihensternen sind viel schwieriger zu beobachten C: NASA/JPL-Caltech; NASA and The Hubble Heritage Team (STScI/AURA); Acknowledgment: C. R. O'Dell, Vanderbilt University

Abb. 2: XMM-Newton-Röntgenbild des Sterns 70 Ophiuchi (links) und der Röntgenemission des den Stern umgebenden Gebietes ("annulus"), dargestellt in einem Spektrum über die Energie der Röntgenphotonen (rechts). Der größte Teil der Emission besteht aus Röntgenphotonen, die vom Stern selbst stammen, aber innerhalb des Beobachtungsteleskops und über die Kamera gestreut werden (angenähert durch das mit der blauen Linie gezeigte Modell), aber es gibt einen bedeutenden Beitrag um die Sauerstoff-K-alpha-Linie bei einer Energie von 0,56 keV, der von der ausgedehnten Astrosphäre und nicht vom Stern stammt (dieser Beitrag ist im roten Modell enthalten) C: Kislyakova et al. Nature Astronomy, 10.1038/s41550-024-02222-x, 2024

Mehr aus der Weltraumforschung an der Universität Wien lesen Sie außerdem im Artikel Europa im Space Race im Wissenschaftsmagazin Rudolphina der Universität Wien oder in der übergreifenden Rubrik Natur, Klima und Kosmos.

Veranstaltungstipp: Webinar "Gibt es Leben in anderen Galaxien?"

Seit über zwei Jahren ist das James Webb Space Telescope – das größte und leistungsfähige Teleskop, das die Menschheit je gebaut hat – im Weltall unterwegs, um diese Frage zu klären. Das Teleskop liefert spektakuläre Bilder und Erkenntnisse über Planeten, Exoplaneten und weit entferne Galaxien. Erstmals haben Wissenschafter*innen die Möglichkeit einen tiefen Blick auf die Atmosphäre eines Exoplaneten zu werfen, der unvorstellbare zwei Millionen Lichtjahre von der Erde entfernt ist. 

Am 22.4.2024, 17:00 – 18:15 Uhr präsentiert Manuel Güdel, Professor für Astronomie, Satelliten- und experimentelle Astronomie von der Universität Wien - selbst an der Entwicklung des Teleskops beteiligt - die neuesten Forschungsergebnisse (Online-Livestream).  

Bitte ein Anmeldungsticket zum Livestream buchen. 

Mehr Informationen zur Veranstaltung finden Sie außerdem hier

Wissenschaftlicher Kontakt

Dr. Kristina Kislyakova

Institut für Astrophysik
Universität Wien
1180 - Wien, Türkenschanzstraße 17
+43 1 4277-53817
+43 660 162 1177
kristina.kislyakova@univie.ac.at

Rückfragehinweis

Mag. Alexandra Frey

Media Relations Manager
Universität Wien
1010 - Wien, Universitätsring 1
+43-1-4277-17533
+43-664-8175675
alexandra.frey@univie.ac.at