Quantenverschränkung in 100 Dimensionen

Einem Team rund um Quantenphysiker der Universität Wien ist es gelungen, die komplexesten Verschränkungszustände nachzuweisen, die bislang mit Photonen geschaffen wurden. Damit rücken sie dem Ziel, Quanteneffekte in technologischen Anwendungen effizient zu nutzen, wieder einen Schritt näher.

Als Quantenverschränkung wird ein Effekt bezeichnet, der es zwei oder mehreren Teilchen scheinbar erlaubt, einander ohne Zeitverzögerung über beliebige räumliche Distanzen hinweg zu beeinflussen. Obwohl dieses Verhalten im Rahmen der Quantenphysik an sich weitgehend verstanden ist, widerspricht es unserer Intuition.

Verschränkungszustände können bei sehr praktischen Anwendungen nützlich sein. Beispielsweise werden in der Quantenkryptographie Quanteneffekte genutzt, um verschlüsselte Nachrichten gegen Lauschattacken zu schützen, indem ein ungewünschter Zugriff auf die übermittelten Informationen praktisch unmöglich ist. Bei quantenkryptographischen Experimenten werden Lichtteilchen (Photonen) verwendet, um Informationen zu übertragen. Photonen können auf verschiedene Arten Verschränkungszustände miteinander teilen – je komplexer diese jedoch sind, umso nützlicher sind sie.

Alternative Methode entwickelt

Eine Möglichkeit, komplexe Verschränkungszustände zu erzeugen, ist, eine große Zahl von Photonen miteinander wechselwirken zu lassen. Sobald aber mehr als zwei oder drei Photonen im Spiel sind, wird es enorm schwierig. Die Quantentechnologie steht hier vor einer wirklich großen Herausforderung.

Die Wiener Physiker, allen voran Mario Krenn, Doktorand in Zeilingers Gruppe an der Universität Wien und Erstautor der Arbeit, sowie Anton Zeilinger, haben nun in Zusammenarbeit mit einem Forscher aus Barcelona eine alternative Methode gefunden, Verschränkungszustände hoher Komplexität zu erzeugen. Dazu nutzten sie räumliche Strukturen, die Photonen besitzen können, und setzten einen speziellen Kristall ein, in welchem Photonenpaare mit verschränkten räumlichen "Mustern" entstehen. Insgesamt haben die Forscher mehr als 200.000 verschiedene Messungen an über 750 Millionen Photonenpaaren vorgenommen. Um die enthaltene Verschränkung zu analysieren, mussten darüber hinaus neue mathematische Hilfsmittel entwickelt werden.



Beispiel einer komplexen Struktur von Photonen, wie sie im Verschränkungs-Experiment benützt wurden. (Foto: Mario Krenn, Universität Wien)



Näher am Ziel

Das Resultat all dieser Bemühungen: Der Nachweis, dass Verschränkungszustände erzeugt wurden, für die normalerweise anstelle von zwei Photonen 13 benötigt werden. "Die analysierten Photonen waren mindestens 100-dimensional verschränkt", sagt Mario Krenn, Physiker an der Universität Wien und Erstautor der Arbeit. "Dass wir erstmalig einen solchen Grad an Komplexität mit zwei Photonen erreicht haben, ist ein wesentlicher Fortschritt, nicht zuletzt hinsichtlich praktischer Anwendungen", ergänzt Anton Zeilinger, Professor für Quantenphysik an der Universität Wien.

Ziel ist es, die kontrollierte Erzeugung von solch komplexen Zuständen für technologische Anwendungen nutzbar zu machen. Die Methode der Wiener Forscher wird dazu beitragen, grundlegende Aspekte der Quantenmechanik tiefer zu erkunden.

Nachwuchswissenschafter Mario Krenn erklärt: "Eine offene Frage ist, ob die Menge an Information, welche räumlich getrennte Teilchen durch Verschränkung teilen können, fundamental beschränkt ist. Die Zustände, die wir nun erzeugen können, werden es ermöglichen, Experimente zur Beantwortung dieser Frage durchzuführen. Das war bislang nicht möglich."

Das Paper "Generation and Confirmation of a (100x100)-dimensional entangled Quantum System" (Autoren: Mario Krenn, Marcus Huber, Robert Fickler, Radek Lapkiewicz, Sven Ramelow, Anton Zeilinger) erscheint im Laufe der Woche im Journal "Proceedings of the National Academy of Sciences of the United States of America" (PNAS).