Quantencomputer: Vertrauen ist gut, Kontrolle ist besser

Quantencomputer können Aufgaben lösen, an denen ein klassischer Computer scheitert. Die Frage, wie die Ergebnisse dennoch mit konventionellen Methoden überprüft werden können, hat ein internationales Forschungsteam um Stefanie Barz und Philip Walther in einem Experiment an der Universität Wien beantwortet. Um den Quantencomputer zu testen, bauten die WissenschafterInnen "Fallen" in die Rechenanfragen ein. Die Ergebnisse der Studie wurden im Journal "Nature Physics" publiziert.

Die Erschließung einzigartiger Quantenphänomene wie der Superposition und der Verschränkung legt den Grundstein für zukünftige Quantencomputer. Diese können viele Aufgaben schneller lösen als herkömmliche Rechenmaschinen. Allerdings führt dieser Vorteil auch zu einer neuartigen Herausforderung: Wie kann man sicher sein, dass das Ergebnis korrekt ist – wenn man dieses selbst mit einem konventionellen Computer nicht berechnen oder überprüfen kann?

Stefanie Barz und Philip Walther von der Universität Wien fanden mit TheoretikerInnen aus Edinburgh und Singapur die passenden Methoden, um einen Quantencomputer zu testen, ohne einen weiteren Quantencomputer zu Hilfe zu nehmen. Die ForscherInnen haben in einem neuartigen Experiment gezeigt, dass dies möglich ist.

Wie man dem Quantencomputer eine Falle stellen kann
Um den Quantencomputer zu testen, bauten die WissenschafterInnen "Fallen" in die Rechenanfragen ein. Diese Fallen sind kleine Zwischenberechnungen, bei denen der Nutzer das Ergebnis im Vorhinein kennt. Tut der Quantencomputer nicht das, was er soll, so zeigt die Falle ein anderes als das erwartete Ergebnis. Der Nutzer kann dadurch überprüfen, wie zuverlässig der Quantencomputer arbeitet. Je mehr Fallen der Nutzer verwendet, desto besser kann sichergestellt werden, dass der Quantencomputer auch tatsächlich korrekt rechnet.

"Wir haben den Test so konstruiert, dass der Quantenrechner die Falle nicht von gewöhnlichen Rechenanfragen unterscheiden kann", erklärt Stefanie Barz, die Hauptautorin der Studie: "Dies ist eine wichtige Voraussetzung um zu garantieren, dass der Quantencomputer das Testergebnis nicht fälschen kann." Die ForscherInnen haben auch getestet, ob der Quantenrechner tatsächlich auf Quantenressourcen zurückgreift. Dadurch können sie sicherstellen, dass der Quantencomputer nicht nur hohe Rechenleistungen vortäuscht, sondern auch wirklich über diese verfügt.

Photonen – das Umsetzen der Idee in die Tat
Das Experiment der ForscherInnengruppe an der Fakultät für Physik basiert auf einem optischen Quantencomputer, der einzelne Lichtteilchen als Datenträger verwendet. "Optische Quantencomputer sind ideal, um die Ergebnisse zu überprüfen. Da die Lichtteilchen mobil sind, können sie genutzt werden, um mit dem Computer zu interagieren", so Philip Walther. Die ForscherInnen sind sich auch einig, dass die Ergebnisse dieses Experiments sowohl für zukünftige Kontrollmechanismen von Quantencomputern wichtig sind, als auch um komplexe Quantenphänomene zu untersuchen.

Publikation in "Nature Physics"
Experimental verification of quantum computation: Stefanie Barz, Joseph F. Fitzsimons, Elham Kashefi, Philip Walther. Nature Physics, September 2013
Doi: 10.1038/nphys2763

Internationale Kooperation und Förderung
Diese Arbeit wurde ausgeführt als Kooperation von WissenschafterInnen der Universität Wien, der University of Edinburgh in UK, des Centre for Quantum Technologies an der National University of Singapore und der Singapore University of Technology and Design. Fördergeber waren der FWF (SFB-FoQuS, START Y585-N20), die Europäische Kommission (QU-ESSENCE und QUILMI), das ERA-Net CHISTERA Projekt (QUASAR), der WWTF (ICT12-041), das Air Force Office of Scientific Research (FA8655-11-1), und teilweise die Singapore National Research Foundation and the Ministry of Education (NRF-NRFF2013-01) sowie das UK Engineering and Physical Sciences Research Council (EP/E059600/1).

Wissenschaftlicher Kontakt
Dr. Stefanie Barz
Quantenoptik, Quantennanophysik
und Quanteninformation
Fakultät für Physik
Universität Wien
1090 Wien, Boltzmanngasse 5
T +43-1-4277-725 67
stefanie.barz(at)univie.ac.at
http://walther.quantum.at          
http://quantum.univie.ac.at

Rückfragehinweis
Mag. Alexandra Frey
Pressebüro der Universität Wien
Forschung und Lehre
1010 Wien, Universitätsring 1
T +43-1-4277-175 33
M +43-664-602 77-175 33
alexandra.frey(at)univie.ac.at

Wissenschaftlicher Kontakt

Dr. Stefanie Barz

Quantenoptik, Quantennanophysik und Quanteninformation
Universität Wien
1090 - Wien, Boltzmanngasse 5
+43-1-4277-725 67
stefanie.barz@univie.ac.at

Rückfragehinweis

Mag. Alexandra Frey

Media Relations Manager
Universität Wien
1010 - Wien, Universitätsring 1
+43-1-4277-17533
+43-664-8175675
alexandra.frey@univie.ac.at