Bildung von Magma-Ozeanen auf Exoplaneten erforscht
23. Oktober 2017Induktionserwärmung kann den Energiehaushalt eines Planeten so stark verändern, dass sein Inneres zum Schmelzen gebracht wird. Das berichtet ein internationales Team unter der Leitung des Instituts für Weltraumforschung der Österreichischen Akademie der Wissenschaften mit Beteiligung der Universität Wien in einer aktuellen Studie, die in der Zeitschrift "Nature Astronomy" erschienen ist.
Wenn sich leitfähiges Material in einem sich verändernden Magnetfeld befindet, kann durch elektromagnetische Induktion elektrischer Strom erzeugt werden. Dieser Strom kann je nach elektrischem Widerstand das Material aufheizen. Diese so genannte Induktionserwärmung wird heutzutage beim Herd zum Kochen und in der Industrie häufig zum Schmelzen von Materialien verwendet.
Schnelle Rotation führt zu Aufheizung
Von diesen Beispielen aus dem täglichen Leben hat sich ein internationales Team inspirieren lassen, das vom Institut für Weltraumforschung (IWF) der Österreichischen Akademie der Wissenschaften (ÖAW) geleitet wurde und dem auch das Institut für Astrophysik der Universität Wien angehörte. "Wir wollten herausfinden, ob Induktionserwärmung auch auf einer größeren Skala eine Rolle spielen könnte", erklärt Erstautorin Kristina Kislyakova. "Dabei interessierten uns vor allem Planeten, die einen Stern mit einem starken Magnetfeld auf einer engen Umlaufbahn umkreisen." Die schnelle Rotation dieser Sterne führt zu einem sich ständig ändernden Magnetfeld in der Planetenumlaufbahn, wodurch innerhalb des Planeten Induktionserwärmung stattfinden kann.
Auswirkungen auf Habitabilität von Planeten
Im Mittelpunkt der Untersuchung standen massearme Sterne, die verglichen mit unserer Sonne exotische Eigenschaften besitzen. Sie sind deutlich kleiner und leuchten viel schwächer. Manche dieser Sterne rotieren sehr schnell und besitzen Magnetfelder, die hundertmal stärker als jenes der Sonne sind. Ein gutes Beispiel dafür ist der massearme Stern Trappist-1, von dem man inzwischen weiß, dass ihn einige Planeten sehr eng umkreisen. Das Trappist-1-System gilt als einer der vielversprechendsten Kandidaten für die Suche nach erdähnlichen Planeten, da dieser kleine Stern eine große Familie von sieben Gesteinsplaneten hat, von denen drei sogar flüssiges Wasser auf der Oberfläche beherbergen könnten.
Kislyakova und ihre KollegInnen haben berechnet, wie viel Energie im Inneren der Planeten von Trappist-1 durch Induktionserwärmung freigesetzt wird. "Wir konnten zeigen, dass die Aufheizung bei einigen Planeten stark genug ist, um vulkanische Aktivität oder sogar die Bildung eines Magma-Ozeans unterhalb der Planetenoberfläche hervorzurufen."
Wie man von unserer Erde weiß, kann starke vulkanische Aktivität große Auswirkungen auf die Atmosphäre eines Planeten haben. "Induktionserwärmung kann somit die Bewohnbarkeit eines Planeten stark beeinflussen", ergänzt IWF-Co-Autor Luca Fossati. Laut den ForscherInnen sollte daher dieser Effekt bei Diskussionen über die "Habitabilität" von Planeten in der Umlaufbahn massearmer Sterne berücksichtigt werden.
Publikation in "Nature Astronomy":
K.G. Kislyakova, L. Noack, C.P. Johnstone, V.V. Zaitsev, L. Fossati, H. Lammer, M. L. Khodachenko, P. Odert, and M. Güdel. Magma oceans and enhanced volcanism on TRAPPIST-1 planets due to induction heating. Nature Astronomy, 2017
DOI: 10.1038/s41550-017-0284-0
Wissenschaftlicher Kontakt
Dr. Kristina Kislyakova
Institut für AstrophysikUniversität Wien
1180 - Wien, Türkenschanzstraße 17
+43 1 4277-53817
+43 660 162 1177
kristina.kislyakova@univie.ac.at
Rückfragehinweis
Mag. Alexandra Frey
Media Relations ManagerUniversität Wien
1010 - Wien, Universitätsring 1
+43-1-4277-17533
+43-664-8175675
alexandra.frey@univie.ac.at
Downloads:
Kislyakova_01.png
Dateigröße: 996,22 KB