Eine Bauanleitung für neue, von der Natur inspirierte Materialien

Grafische Darstellung. Links: Silikapartikel, die durch molekulare Schablonen aus Eiweiß in ca. 1 mikrometer große Kügelchen geformt wurden. Rechts: Eine Darstellung der Struktur der Eiweißschablonen im Inneren der Kügelchen.

Materialien haben großes Potential für biomedizinische Anwendungen

Die Natur hat einige der erstaunlichsten Materialien hervorgebracht: von unseren widerstandsfähigen Knochen bis hin zu den extrem harten Silikat-basierten Hüllen der Kieselalgen. Der Wissenschaft gelingt es bisher nur sehr eingeschränkt diese Prozesse nachzustellen, obwohl vollständig biokompatible Materialien für Anwendungen in der Biomedizin oder Energiegewinnung ein großes Potential beinhalten. Ein Team um Dennis Kurzbach und Christian F. W. Becker von der Fakultät für Chemie der Universität Wien hat nun die molekulare Grundlage zur biomimetischen Generierung von verschiedenen Silikamaterialien untersucht. Dabei konnte erstmals festgestellt werden, wie unterschiedliche Anordnung von kleinen Eiweißen (Peptide) als Vorlage für neue Silikastrukturen dienen können. Die Studie erschien im Fachmagazin "Advanced Materials".

Die Forscher*innen nutzten in ihrer Arbeit künstliche "Designer"-Peptide, also Eiweiße auf Basis des sog. Silaffin-Proteins, das in Kieselalgen die Herstellung der Silikahülle (Siliziumdioxid) maßgeblich kontrolliert. Unterschiede in der Peptidstruktur führten dabei zu unterschiedlichen Anordnungen im Raum, die sich in Silikamaterialien mit runder, flächiger und auch stabartiger Morphologie widerspiegelten. Die so gewonnen Silikapartikel können auf Grund der sehr umweltfreundlichen Synthesebedingungen mit empfindlichsten Molekülen beladen werden und z.B. als Speicher oder Lieferwerkzeug in der Biomedizin, also beispielsweise beim Impfstofftransport, eingesetzt werden.

Kombination von Chemie und Strukturbiologie

"Durch die Verknüpfung chemisch-synthetischer Methoden mit strukturbiologischen und computergestützten Methoden haben wir das Wechselspiel aus Peptidsequenz und Umgebungsbedingungen systematisch untersuchen können", sagt Dennis Kurzbach, der mit seiner Arbeitsgruppe im Bereich der Kernmagnetresonanz am Institut für Biologische Chemie und dem NMR-Zentrum der Universität Wien forscht.

Molekulare Schablonen für biomimetische Materialien

Die Kombination der Synthese von verschiedenen Silaffin-basierten Peptiden, die sich zu unterschiedlichen größeren Strukturen zusammenlagern, und das Verständnis der Mechanismen, die dieses Zusammenlagern kontrollieren, stellen einen Durchbruch in der Entwicklung und der Analyse neuer biomimetischer Ansätze zur Herstellung von Materialien für unterschiedlichste Anwendungen dar.

"Der Schlüssel zum Erfolg ist das Verständnis des Einflusses der Peptidsequenz und Struktur auf die Bildung der Peptid-basierten Schablonen, die so neue Strukturen aus Silika zugänglich machen", so Christian Becker, Vorstand des Institutes für Biologische Chemie: "Dieser Ansatz kann hoffentlich für viele weitere ähnliche Prozesse angewendet werden, um so zukunftsfähige Materialien nachhaltig zu generieren."

Publikation in "Advanced Materials":

Understanding self-assembly of silica precipitating peptides to control silica particle morphology. Johannes Strobl, Fanny Kozak, Meder Kamalov, Daniela Reichinger, Dennis Kurzbach, Christian FW Becker, Adv. Mat. 2022

DOI: 10.1002/adma.202207586 

Abbildung: 

Links: Silikapartikel, die durch molekulare Schablonen aus Eiweiß in ca. 1 mikrometer große Kügelchen geformt wurden. Rechts: Eine Darstellung der Struktur der Eiweißschablonen im Inneren der Kügelchen. (Copyright: Dennis Kurzbach)

Wissenschaftlicher Kontakt

Assoz.-Prof. Dr. Dennis Kurzbach

Institut für Biologische Chemie
Universität Wien
1090 - Wien, Währinger Straße 38
M +43-664-60277-70528
dennis.kurzbach@univie.ac.at

Univ.-Prof. Dr. Christian Becker

Vorstand des Instituts für Biologische Chemie
Universität Wien
1090 - Wien, Währinger Straße 38
+43-1-4277-705 10
+43-664-60277-705 10
christian.becker@univie.ac.at

Rückfragehinweis

Theresa Bittermann, BA

Media Relations, Universität Wien
1010 - Wien, Universitätsring 1
+43-1-4277-17541
theresa.bittermann@univie.ac.at